James Zou, Ph.D. Student
Harvard and the Broad Institute
Thursday, March 6, 2014 - 11:10am
Bahen Centre for Information Technology, Room 1180
Special Seminar
Abstract:
New genomic technologies generate unprecedented data on the inner workings of cells. To harness this data to understand and diagnose human diseases, we need to tackle several challenges (opportunities) in machine learning.
In this talk, I will describe my research combining computational tools with high-throughput experiments to probe epigenomic regulations of cellular function. I will discuss a new method to identify changes in the epigenome across human populations that are associated with disease. We validated the method on DNA methylation experiments and applied it to rheumatoid arthritis, breast and colon cancer data to identify novel epigenetic biomarkers. In the second part of the talk, I will discuss ongoing work and new directions in contrastive learning and intelligent designs for synthetic biology.
Bio:
James Zou is a Ph.D. candidate at Harvard and the Broad Institute, and is also a Simons Research Fellow at U.C. Berkeley. He is interested in developing new probabilistic models and machine learning algorithms, and in applying them to tackle challenges in computational biology and synthetic biology. He is also interested in multi-agent systems and algorithms inspired by biology. His research has been supported by a NSF Graduate Fellowship and a Gates Cambridge Scholarship.
Host:
Dr. Fritz Roth, The Donnelly Centre for Cellular and Biomolecular Research and the Department of Computer Science