Karen Kasza, Assistant Professor
Columbia University
Thursday, October 15, 2020 - 11:00am
https://utoronto.zoom.us/j/94049486250
Invited Speaker Seminar
Abstract:
During embryonic development, groups of cells reorganize into functional tissues with complex form and structure. Tissue reorganization can be rapid and dramatic, often occurring through striking embryo-scale flows that are mediated by the coordinated actions of hundreds or thousands of cells. In Drosophila, cell rearrangements in the embryonic epithelium rapidly narrow and elongate the tissue, producing a tissue flow that doubles the length of the body axis in just 30 minutes. These types of conserved tissue movements can be driven by internal forces generated by the cells themselves or by external forces from neighboring tissue. While much is now known about the molecules involved in these cell and tissue movements, it is not yet clear how these molecules work together to coordinate cell behaviors, give rise to emergent tissue mechanics, and generate coherent flows at the tissue and embryo-scales. To gain mechanistic insight into this problem, my lab combines genetic and biophysical approaches with emerging optogenetic technologies for manipulating molecular and mechanical activities inside cells with high precision. I will discuss some of our recent findings on how cellular properties and mechanical forces are regulated in the Drosophila embryo to allow (or prevent) rapid cell rearrangements and tissue flows during specific events in embryonic development.
Host:
Rodrigo Fernandez-Gonzalez
Dept of Cell and Systems Biology