

BiophysTO Lunchtime Seminar Series

Dr. Douglas Tweed

Dept of Physiology, Collaborative Program in Neuroscience (CPIN), University of Toronto Date Thursday, Oct 24 2019 12:00 – 1:00 pm

Location

McLennan Physical Laboratories Room MP606 60 St. George Street

Pizza and refreshments will be provided

Costate methods for reinforcement learning

Many control systems, in the brain and in computers, can improve with practice, by adjusting their own internal processing based on feedback from sensors — a process called *reinforcement learning*. Recent work in Al has led to powerful new algorithms for reinforcement learning, most of them based on the concepts of *action-value functions* and the *Bellman equation*, but I will describe a different approach based on the *costate equation*, studied by the great control theorist Pontryagin and others in the 1950s. Costate methods have been neglected in Al, probably because they require that the control system possess a *model*, or in other words an internal simulation of the process it is trying to control. For instance, a control system learning to throw a ball would need a model including its throwing arm, the ball, and the relevant laws of physics. I will show that the costate equation provides a simple way to learn useful models even in complex tasks, and I will compare the resulting algorithm to a leading Bellman-based method.

Host: Wilson Zeng

UTSG

Chemistry