Molecular Simulations of Intrinsically Disordered Proteins

Prof. Sarah Rauscher
Department of Chemical and Physical Sciences, University of Toronto, Mississauga
Thursday, March 1, 2018 - 12:00pm
McLennan Physical Laboratories, Room MP606
Invited Speaker Seminar
Intrinsically disordered proteins (IDPs) are abundant in all kingdoms of life and fulfill many critical functions. Despite their biological importance, IDPs are poorly understood relative to the wealth of structural information available for folded proteins. The structural description of IDPs poses formidable challenges to both theory and experiment: IDPs do not have a stable structure, but rather a structural ensemble consisting of many interconverting conformational states. Molecular simulations can be used to obtain structural ensembles of IDPs, but are currently limited by the accuracy of their energy functions (force fields). To address this challenge, we have carried out a systematic comparison of stateof-the-art force fields for the specific case of IDPs and developed an improved force field suitable for both IDPs and folded proteins. Accurate simulations of IDPs open up new possibilities for the detailed structural characterization of this important class of proteins. As a prototypic example of the insight afforded by molecular simulations of IDPs, I will describe our work on the structure of elastin, the protein responsible for the elasticity of skin, lungs, and arteries.
Dr. Anton Zilman
BiophysTO Lunchtime Talks